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Abstract. The realistic structural-dynamic description of railway bridges during train pas-
sage is crucial for the realistic evaluation of dynamic train-bridge compatibility. New vehicles
(trains), especially in the high-speed range, can excite the existing railway bridges to unde-
sirable resonance effects due to the regular sequence of axles when passing railway bridge
constructions (periodic action). Therefore, the train-specific excitation behavior on existing
railway bridges must be evaluated in the context of train-bridge compatibility as part of the
technical network access process. In addition to cross-section values (distributed mass per me-
ter of the bridge superstructure, bending stiffness of the cross-section), damping properties in
the resonance case are particularly decisive. The approach of standard damping per material
type according to DIN EN 1991-2:2010 usually results in damping values that are too low for
existing bridges. From a series of measurement campaigns on reinforced concrete, pre-stressed
concrete, and steel/steel composite bridges throughout Germany, it could be shown based on
the evaluation of the vibration behavior of the railway bridges after train passage (free decay
phase) that the identified (measured) damping values (damping ratio D) are usually higher
than the standard damping according to DIN EN 1991-2:2010 (to be applied for the design of
new construction projects). This contribution proposes a methodology for applying more re-
alistic prediction values for railway bridges based on previous measurement results as part of
the dynamic bridge compatibility check of new vehicles in the context of the technical network
access. First, an overview of available measured values for railway bridges in the DB InfraGO
AG railway network (Germany) is provided. The proposed damping values for existing railway
bridges that have not yet been measured are predicted using multidimensional regression meth-
ods, considering the influencing variables of material type, year of construction, span length,
static system and track type (e.g. ballast, slab track, direct rail fastening). Using a neural net-
work approach, the outcome of machine learning (ML) is also compared with the regression
results from multidimensional interpolation. A safety factor approach is finally discussed for
practical application in a safety-relevant context.
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1 INTRODUCTION

As part of the technical network access in the area of the railway network of DB InfraGO
AG (railway infrastructure manager in Germany), new trains must be examined for dynamic
compatibility with the existing bridge infrastructure. At higher vehicle operating speeds, the
dynamic component in the structural response from the train-bridge interaction increases, see
e.g. [1]. The regular sequence of similar or even identical wheelset loads leads to periodic
excitation of the bridge superstructure when trains pass (Fig. [I)) and can exceed the available
capacity of the load-bearing capacity (ultimate limit state — ULS) in the resonance case (excita-
tion frequency corresponds to one of the bridge eigenfrequencies), see permissible limit speeds
of quasi-static compatibility given in DIN EN 15528:2022, Table C.1. Furthermore, the cur-
rent compatibility tests also include checking the serviceability limit state (accelerations) and
increased fatigue from dynamic excitation, see e.g. [2]].
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Figure 1: Moving load model (single forces representing wheelset loads of the train) on bridge model (here: simply
supported beam): v traveling velocity of the train, £/ bending stiffness of the bridge superstructure, p distributed
mass of the bridge superstructure, ngs calculated first eigenfrequency (bending) of the bridge superstructure, D
damping ratio of the bridge construction, L span length.

The dynamic compatibility assessment (Germany) is divided into 5 levels, which are char-
acterized by an increase in the level of detail (LoD) and the model complexity of the individual
system components (train and bridge), see Fig.[2l The individual levels are presented and ex-
plained in detail in [1]]. Current further developments of Level 2 were recently presented in [3]].
In Level 2, the dynamic compatibility tests of train-bridge interaction are performed as part
of a parameter study on a generic set of single-span girder bridges (simply supported beams)
of span lengths from 1 m to 120 m. The parameter study is based on conservative assumptions
(eigenfrequency per span length and standard damping) with respect to the existing bridge stock
of the railway network. In the higher Levels 3, 4 and 5, individual existing bridge structures
are modeled for specific lines and their structural dynamic response is simulated when trains
pass over them. In Level 3, available plan data of the individual bridge structures of a line are
used for this purpose. In Level 4, the bridge model is enriched and calibrated using dynamic
structural measurements (in-situ). The objective quantities of the structural measurements are
the experimental identification of the existing natural frequencies and the existing applicable
damping in the form of the derived damping ratio D (viscous damping model within the frame-
work of modal consideration, linear system behavior). In Level 5, train-bridge tests are also
carried out with the real test object (vehicle/train) on the bridge structure under investigation
with previously identified, expected significant dynamic structural response. The investigations
in Levels 3, 4 and 5 are to be carried out on a line-specific basis by evaluating a large number
of structures. Hence, network-wide measurement data is available from previous investigations
(e.g. from Level 4) on these individual structures. The measurement data will be characterized
in more detail in the following section.
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Figure 2: Levels of verification (see [} 3]]) shown as a function of the levels of detail (LoD) and potential system
reserves (load-bearing capacity) for the technical network access process (DB InfraGO AG, Germany).

1.1 Problem description

In Level 3 (Fig. ), the conservative damping (damping ratio D,om,) specified in DIN EN
1991-2:2010, which is employed for new structures in the planning phase, is used for the assess-
ment of individual bridge structures. For existing bridges (railway network), there are currently
no recommendations in Germany for assumptions that deviate from these values. However,
in a large number of structural dynamic measurements (Level 4) carried out (see Sec. ), it
was shown that the damping values measured in existing structures are above the conservative
damping values of DIN EN 1991-2:2010 in most of the cases. An initial evaluation comparing
standard normative and measured values for the railway network of DB InfraGO AG (Germany)
was shown in [3]. In the following, a methodology will be presented which allows to predict,
i.e. reliably estimate, realistic damping values for a given bridge superstructure by relating ex-
isting damping data of bridge structures (database of measured values) and structural properties
of existing bridge structures that show similar/comparable system features.

The methodology has already been successfully derived for the prediction of eigenfrequen-
cies of existing railway bridges [4]. The present contribution presents and discusses the further
development of the methodology for the prediction of damping. Note that in the following, the
focus is on the processing of already available damping ratios (data) instead of their identifica-
tion from experimental measurement data (i.e. acceleration-time signals).

1.2 State of the art

The correct determination of the dynamic structural damping properties is particularly rel-
evant for the dynamic excitation of railway bridges under high-speed traffic in order to be
able to realistically represent the dynamic structural response from periodic excitation, see
e.g. [S,16, (7, 18]].

Data-driven machine learning (ML) approaches have been used in the field of civil engi-
neering for a number of years, and recently with an increasing trend. In [9], for example,
amplitude-dependent structural damping of buildings is mapped on the basis of building mea-
surements using artificial neural networks (ANN) of different architectures. In addition to the
application on the structural scale (e.g. [10]), ANN are also increasingly used to model/represent
material behavior as an alternative for complex physically-based material models, see e.g. [[11]
for the derivation of damping properties of solids from their system parameters or [12] for the



Ronny Behnke, Giinther Grunert and Xiaohan Liu

specification of dynamic properties of soils (damping ratio).

In addition to extensive analytical approaches for determining the damping coefficient from
the measurement signal of mostly acceleration sensors, which are installed directly on the struc-
ture and record its structural response as a result of train passage, methods have recently been
developed to determine the structural properties of bridges by indirect measurement from the
vehicle (during train passage). In [13]], the idea of indirect measurement is described for the
identification of bridge eigenfrequencies from on-vehicle acceleration sensor measurements
during train passage of a bridge using a supervised deep learning-based approach with transfer
learning.

In [4], an ML-based algorithm for the prediction of eigenfrequencies of railway bridges has
already been presented. In the following, this approach is adopted and further developed for the
available damping data [3]. For the German railway network, the functional dependence of the
damping ratio for different bridge material types was already shown in [3]] as a function of the
span (resonant) length L (sole input variable) using linear regression.

1.3 Outline

In the following, Sec. 2| first presents the database of measured damping values for the Ger-
man railway network (DB InfraGO AG) and explains the available, associated structural prop-
erties of the measured bridges. In Sec. 3, approaches for realistically predicting damping of
existing bridge structures are presented. In Sec. d] results from the different approaches are
compared with each other and tested for suitability for their application. Finally, further up-
coming development steps and the key findings are summarized in Sec.[6land Sec.[7l

2 OVERVIEW OF DATA
2.1 Data basis

As a data basis for the railway network of DB InfraGO AG (Germany), series of measure-
ments (acceleration measurements of bridge superstructures during train passage) were carried
out in the past on a total of 716 bridge superstructures, see Fig. B of various material types
(reinforced concrete / filler beam: 192, pre-stressed concrete: 116, steel/composite: 408) and
the respective damping factor was determined from the acceleration signal in the decay phase
of the superstructure (train has left the bridge, no additional damping induced by the train-
bridge interaction). For each bridge measurement, the individual measurement results of all
train passages that could be evaluated per bridge are also available. Most frequently, individ-
ual measurements from 10 train passages per bridge superstructure were recorded within such
a measurement series of a bridge, see Fig. 4l The evaluation of the different train passages
per measurement series already results in a distribution (scattering) of the damping ratio of the
bridge superstructure under investigation (Fig.[3). In Fig.[3] the calculated (discrete) values for
the 5%-fractile value, the average value and the 95%-fractile value of the damping ratio D (free
decay phase) are also shown in the histogram of the individual results of such a measurement
series of a bridge superstructure.

For the data basis at European level and the EU-wide bridge stock, it is referred to Sec. [6l

Most of the measurements were carried out and evaluated by DB’s own system service
provider and are therefore comparable to a large extent. This is a basic condition for the
further evaluation of the measurement results in order to make predictions from a compara-
bly determined data basis (damping values) and to exclude systematic errors due to different
determination of individual damping values via different evaluation procedures. Acceleration
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Figure 3: Map of dynamically assessed (measured) railway bridge superstructures (Germany) and example of
distribution (histogram) of the identified damping ratios D (decay phase) per train passage (measurement series
(example) of one bridge superstructure).

measurements (acceleration-time signals) were recorded for each dynamically measured bridge
superstructure (mostly single-span girders and continuous girder systems, see Fig.[5 of national
line category D4DB) using several acceleration sensors (mostly three) per bridge superstructure.

The damping ratio for each train passage was determined from the time curve of the ac-
celeration signals of the measuring sensors (acceleration-time curve) of the decay phase (train
has left the bridge), see Fig. [@ as an example, with the acceleration amplitudes a.(t;) and
a,(ty = t; + j T,) separated by a time difference of j oscillation periods 7.

The bridges were mostly selected on the basis of their dynamic significance regarding train-
bridge excitation (Level 4) by high-speed traffic. In some cases, measurements were also carried
out as part of structural reanalysis, e.g. for local speed increases (infrastructure velocity) in the
railway network.

The data scatter recognizable in the histogram shown in Fig. [3 stems, among other things,
from different boundary conditions of the measurements carried out, as different trains with
different velocities were used for the acceleration recordings. It is therefore difficult to apply
a probabilistic evaluation with a predefined distribution function, e.g. as described in DIN EN
1990:2021-10 Annex D (informative). The scatter will be significantly smaller under similar
boundary conditions, which has also been demonstrated in the past in the context of controlled
forced excitations with approximately the same boundary conditions (so-called forced oscilla-
tion, exciter or shaker measurements, see e.g. [18,114]]). In general, a further (non-linear) increase
in the total damping (amplitude and speed dependence of damping features, train-bridge inter-
action with damping from the train chassis, non-linear structural properties) can be expected,
especially in the resonance case, even if these non-linear effects are to be limited for reasons
of serviceability and low fatigue. It can therefore be assumed that the use of the damping
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Figure 4: Overview of available data from measurement series on railway bridge superstructures: Recorded number
of train passages per measurement campaign.
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Figure 5: Overview of assessed bridge types (construction forms) with damping measurements for training.

values determined during the decay phase is probably on the safe side for application within
train-bridge compatibility tests.

2.2 Measurement data and data management

As an overview of all measurements, the derived normalized results (5%-fractile, average
value and 95%-fractile value of the damping ratio) are shown in Figs. [7]and [8] as a function of
the material type and the span L of the bridge superstructure. The respective standard damping
according to DIN EN 1991-2:2010 was used for normalization of the identified damping ratios
of the measurments. Consequently, Figs. [7] and [§] show magnification factors for the expected
damping ratio of existing railway bridges (DB InfraGO AG, Germany) in relation to the con-
servative standard damping given in DIN EN 1991-2:2010 (without additional damping from
train-bridge interaction).

The linear trend functions (linear regression) plotted in Figs. [71 and [§] show the general (lin-
ear trend) of the magnification factor of the normative standard damping ratio Doy, (damping
according to DIN EN 1991-2:2010) as a function of the span length L of the bridge superstruc-
ture. In addition to the linear regression line, other ansatz functions can also be used for the
regression (polynomial regression) if sufficient data is available. However, this representation
only allows an estimation of the magnification factor for the input variable L (span length) of
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Figure 6: Idealization of the decay phase of the bridge superstructure after train passage (acceleration-time curve):
Identification of the decay curve (envelope).

the bridge superstructure. The influence of other input variables (structural properties) for a
given span length L is not identifiable in this case. A more realistic and more reliable damp-
ing prediction is possible with an available database by comparing/including several structural
properties (influencing input variables). Two approaches are discussed in Sec. Bl

The damping ratio obtained from measurement (Level 4) of the bridge superstructures was
stored in a database (digital model of the railway bridge stock, see [1]). Each bridge superstruc-
ture is assigned a dataset which, in addition to the measured damping ratio, also contains other
structural properties from plan data or other data sources (e.g. traffic data, timetable data) after
data fusion. Data fusion enables in the following to correlate individual structural properties
with the measurement data and to specify influencing variables from the comparison across the
entire measured railway bridge stock.

2.3 Sources of damping and influencing variables

Sources of damping (Fig. Q) can be assigned to one of the three main groups, i.e.
* material damping (building material),
* structural damping (connections),
» geometrical damping (radiation damping),

see also [15]. While material damping originates from local material properties and its dis-
sipative behavior due to applied time-dependent and recurring (cyclical) loading and unload-
ing, structural damping at the macroscale includes constructive structural properties for further
damping contributions (e.g. from the presence of relative friction from ballast [/, [16]]), dissipa-
tive relative motion of structural parts (component connections) or built-in technical damping
components. For dynamic problems, the system boundaries must be described even more real-
istically in detail than in static calculations in order to correctly capture the interaction with the
environment (subsoil). Above the cut-off frequency of the respective soil system, waves propa-
gate into the surrounding subsoil and thus cause a geometrically induced energy transport away
from the vibration source. In addition to the shape of the abutments and the dynamic (usually
non-linear) bedding properties (decisive for frames), the geometry and the environment (soil
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Figure 7: Magnification factor of standard damping ratio (average value and 5%-fractile value) resulting from

measurement series of different railway bridge superstructures with span length L (DB InfraGO AG, Germany):
a) RC/FB - reinforced concrete / filler beam, b) PSC — pre-stressed concrete, c) STC — steel/composite.

properties) of the subsoil also play a role, see e.g. [[1'7, [18]. The experimental measurement
usually includes different dominant proportions of the individual sources. The mathematical
identification of individual proportions (example ballast: [7]) is usually challenging [[19} 20].
While detailed information on the material, construction type and other structural properties of
the individual bridge superstructures is generally available from plan data in the database, the
geotechnical characteristics of the surrounding soil are less detailed and represent a source of
data uncertainty. For this reason, their influence is not discussed further in the following and
it is assumed that they play a subordinate role compared to material and structural damping.
Figure |9 illustrates the different sources of damping and possible geometrical and structural
building properties (influencing variables).

The general functional representation of the damping value per material type and span length
L as only influencing input variable is limited due to the significant variance and uncertain cor-
relation. In addition, damping values evaluated by measurement are subject to a high degree
of uncertainty. In the standard DIN EN 1991-2:2010, conservative assumptions (lower limit of
previously evaluated damping values of reference bridges) are specified for each material type
and span length L. These assumptions therefore provide very conservative values for damp-
ing ratios without taking other influencing variables into account for the same span length L.
Dynamic structural responses calculated with these values generally provide excessively large
calculated vibration amplitudes when trains pass, which can still be considered an advantage
when designing new structures for later system reserves. In the case of existing structures that
can no longer be modified by design, however, the overestimated dynamic structural responses
usually lead to verification problems when new train types are introduced (technical network ac-
cess process with dynamic train-bridge compatibility checks). A further consequence consists
in an underestimated residual load-bearing capacity in the context of fatigue investigations,
which should be avoided in the interests of efficient resource-conserving management of rail-
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Figure 8: Magnification factor of standard damping ratio (average value and 95%-fractile value) resulting from
measurement series of different railway bridge superstructures with span length L (DB InfraGO AG, Germany):
a) RC/FB - reinforced concrete / filler beam, b) PSC — pre-stressed concrete, c) STC — steel/composite.

way infrastructure. Previous investigations and attempts at quantification [21} 22]] (prediction of
more realistic, mathematical damping values from energy considerations of dissipation of the
individual bridge components, ballasted superstructure separate from the remaining construc-
tion on a simple Euler-Bernoulli beam model) have shown that the design of the bearing of the
rails (superstructure: ballast or slab track, rails longitudinally movable or fixed) have a signifi-
cant influence on the existing damping values. In general, it can be stated that the presence of
slab tracks leads to small values, sleepers in ballast lead to higher damping values of the overall
structure due to relative movements in the ballast bed (mainly with high-frequency vibration)
or additional friction at system boundaries and a better load distribution (more favorable, i.e.
lower, dynamic excitation). In addition to the design of connection details, an influence from
the year of construction can be expected. Older structures generally exhibit greater wear with
associated increased dissipative properties due to structural damping contributions. In the case
of reinforced concrete and pre-stressed concrete structures, older structures may have entered
state II (cracked state of the concrete tension zones), while in the case of steel bridges, increased
friction occurs mainly at structural connections (joints, connection details). In addition to the
influencing quantities mentioned, the general design of the static load-bearing system (single-
span girders, continuous girders, frames, special structures: e.g. tied-arch bridges) also has
group-related properties, i.e. a combined consideration can also lead to strongly varying damp-
ing properties for the same remaining system parameters. With extensive data, it is therefore
promising to compare structures with as many similar system parameters as possible (taking
into account a relative tolerance for each influencing variable if necessary). The system param-
eters examined in the following as input variables are described in Sec.[3l

The existing database (DB InfraGO AG, Germany) does not currently have a sufficient scope
to provide several datasets (results from measurements) for every possible set of different influ-
encing variables. In this case, the approach of larger relative tolerances per influencing variable
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Figure 9: Sources of damping: schematic illustration for the case of a simply supported railway bridge superstruc-
ture.

can be expedient for a selection of system-related similar structures. In addition, even almost
identical bridge superstructures (e.g. arranged in parallel as part of an overall double-track
bridge structure) sometimes show significant deviations in the damping value determined by
measurement, which can indicate other influencing variables (e.g. excitation by train passage).

3 METHODS FOR DAMPING PREDICTION

In recent years, ML methods have also been increasingly used in civil engineering. Fig-
ure [10 provides an overview of ML approaches by highlighting the selected ones studied in the
following. The strength of data-based ML approaches is based on the model-free assessment of
available data. For the prediction of objective quantities, no physical relationships need to be
captured a priori by means of an analytical or physically based model as an initial assumption.
ML relates a large number of influencing variables (input data) to objective quantities. In the
present case, the following input variables per bridge superstructure are selected:

* span length L,

* line speed vy, ON the bridge superstructure,

bending stiffness /1 of bridge superstructure,

* year of construction,

distributed mass p of bridge superstructure,
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* calculated first bending eigenfrequency ng3 (Level 3),
* track type,
* type of static system.

The bridge measurements listed in Sec. 2l (with individual measurement results for each train
passage) are available as the data basis for regression and training in case of ML: reinforced
concrete / filler beam (RC/FB): 192, pre-stressed concrete (PSC): 116, steel/composite (STC):
408. In addition, further measurement results from earlier measurement campaigns are avail-
able only including objective quantities (average damping ratio of the measurement series per
bridge superstructure). These additional datasets are used in the following for validation for
regression and ML approaches: reinforced concrete / filler beam (RC/FB): 107, pre-stressed
concrete (PSC): 19, steel/composite (STC): 40.

regression -———
’—F supervised

classification
machine
learning
(ML)

\— unsupervised

Figure 10: Overview of ML approaches.

3.1 Linear interpolation and regression approach

The linear multidimensional (n-dimensional) regression (MR) approach is based on the
search for interpolation points that originate from existing measurement data (average values)
and structural properties, see Fig. For the prediction of damping features of bridge struc-
tures, a database query is executed in which relevant similar structures are identified via their
structural properties (n-dimensional in general, here n = 8) and compared to the query object
with a possible tolerance of the deviation (degree of similarity). For continuous variables (e.g.
bending stiffness £/, distributed mass i, span length L), the objective quantity is (linearly)
interpolated from existing measurements for the query. No interpolation takes place for dis-
crete input variables (e.g. construction type, material type, track type); here only similar bridge
superstructures are included in the list of results. The process is shown in algorithmic form in
Alg. [

The existing database does not have a regular grid (grid points) that would enable regu-
lar interpolation. For this purpose, three (intermediate) objective quantities are determined
from a cluster of identified similar bridge superstructures evaluated by measurement: predicted
minimum value, predicted average value for several datasets, predicted maximum value. The
interpolation procedure for this data triple is illustrated in Fig. L1l
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Algorithm 1 Computation sequence: n-dimensional interpolation.
» initialize damping array D = 0
» read in system parameters of existing bridge from input file: n ident_parameters
» normalization of the system parameters of existing bridges
for all bridge IDs ¢ in database do
if D; > 0 (damping measurement results are available for bridge ) then
for system parameter j of n do
if abs (parameter(7, j) — ident_parameter(j)) < tol(j) then
» add D; to array D
end if
end for
end if
end for
» compute minimum of D
» compute average of D
» compute maximum of D
» compute damping limits Dyorm
» post-processing: output Dpreq/pom

DA
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Figure 11: Interpolation with range formed by minimum, average and maximum predicted value.

3.2 Machine learning: Artificial neural network

In addition to the approach presented in Sec. several ANN architectures were used to
predict the damping values and their suitability was tested after training and validation. The
following steps are required for the application of an ANN:

* training,
« validation,
* testing.

The selected architectural and training parameters of the ANN are listed in Tab.[Il According
to an expert approach, a separate ANN (A1, A2, A3) is formulated and trained for each bridge
material type (Al: RC/FB, A2: PSC, A3: STC) using the average values of damping measure-
ments, see Figs.[7land [8l A multi-layer feed-forward network is used as basic network archi-
tecture, see Fig.[12]for each ANN. A backward-forward training algorithm (stochastic gradient
descent (SGD) optimization) is employed during the training phase. Various ANN architectures
and parameter combinations were tested for the selection of the final ANN architectures and the
training parameters. The final parameters are shown in Tab.[Il
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Figure 12: ANN architecture (schematic illustration) multi-layer feed-forward network for bridge material types
RC/FB (A1), PSC (A2) and STC (A3).

Fig. 13| shows the computed root mean square error (RMSE), i.e.

1 = [ Dpeai — Di\°
RMSE = , | — —peer Tt 1
m Zz:; ( Dnorm,i ) ’ ( )

for the training of the different ANN (A1, A2, A3) for the bridge material types RC/FB, PSC
and STC. The algorithmic sequence for a query using ANN is specified in Alg.[2l

4 COMPARISON OF RESULTS AND DISCUSSION

This section presents the results from the two previously presented approaches for predicting
the damping properties in terms of the magnification factor

D pred

VD - Dnorm (2)
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network architecture: Al: RC/FB A2: PSC A3: STC
number of input neurons 8 8 8
number of hidden layers 3 3 3
number of neurons per hidden layer 48-32-16 48-32-16 48-32-16
type of transfer function per hidden layer tanh-linear- tanh-linear- tanh-linear-
linear linear linear
batch size 100 100 100
number of epochs 1000 1000 1000
training size 192 116 408
test size 107 19 40
learning rate 0.001 0.001 0.001
decay rate 0.9 0.9 0.9
b1 0.85 0.85 0.85
Ba 0.95 0.95 0.95
€ 1.0-10°8 1.0-1078 1.0-10°8

Table 1: Training parameters for selected artificial neural networks Al, A2, A3.

! ' ' ' ' ' ' ' ' ' —— RC/IFB
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Figure 13: Root mean square error (RMSE) during training.

of the standard damping ratio (DIN EN 1991-2:2010) for selected examples. In Sec. 4.1] the
quality of the prediction is first shown using other available bridge measurements (test cases)
that were not previously included in the prediction approaches. In Sec. sensitivity studies
are carried out on selected examples to highlight the dependence of the objective quantity on
the input variables.

4.1 Testing

In the following, measurement data from other, additional bridge measurements not previ-
ously included in the training and validation phase are compared with the predicted damping
values in terms of the magnification factor of the standard damping ratio, see Fig. 14l The
comparison of the measured and predicted damping values in Fig. [I4] still shows a significant
scattering. This is due to the small amount of available training data and other system parame-
ters not yet included in the study, which will have a specific and system-related influence on the
damping to be expected in reality. In general, the prediction of damping values can be expected
to have a higher scattering and, consequently, a greater uncertainty than compared to the eigen-
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Algorithm 2 Computation sequence: ANN

» initialize ANN architecture A1, A2 or A3
» initialize training dataset from database
for all bridge IDs ¢ in database do

if D; > 0 (damping measurement results are available for bridge 7) then

» use normalized dataset ¢ for training and validation with n system parameters (features) and

normalized objective quantity D;/Dyorm,i

end if
end for
» read in system parameters of existing bridge superstructure from input file: n ident_parameters
» call ANN prediction for system parameters: n ident_parameters
» output Dpred/Diorm

frequency, see investigation presented in [4]. The strength of an application of ML methods
is only achieved if a sufficiently large database is available. Nevertheless, the predicted damp-
ing magnification factors are predominantly below those of the magnification values achieved
from measurements, see Fig.[14] which leads to a statement on the safe side. For further safety
considerations in the case of an application in a safety-relevant context, it is referred to Sec.[3l

8 AL B A A I RC/FB MR 8 T T T T T . PSC MR
7+ '/' - RC/FB ANN 7+ ‘,0’ - PSC ANN
6 L & 4 6 L &~ 4
T o X <
E ST v ] ES[ w o Am ]
o 4r [ ] // ] o 4 L n ]
] r ] ] A
o 3r - — o 3r ) —
<3 L -!-}{j'. u > r -../' L
= o UL T ] Ser 1
Y T ] L ]
! -:ﬁ" L u 1 _//{' L
0 o T T T T R P 0 o T T R T R R
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Figure 14: Comparison of measurement results in terms of D /Dyom and predicted results in terms of Dpred/ Diorm
obtained from MR and ANN: a) RC/FB - reinforced concrete / filler beam, b) PSC — pre-stressed concrete, ¢c) STC
— steel/composite.

4.2 Application: Sensitivity of damping ratio with respect to input variables

As an application case, the prediction of the damping magnification factor for fixed structural
properties but varying span length L is investigated. Figure [L5shows the results for the bridge
superstructures RC/FB, PSC and STC. In the case of MR, a prediction range consisting of
minimum, average and maximum values is obtained.
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Figure 15: Predicted damping magnification factor Dyreq/ Dporm for a fixed set of input parameters but varying span
length L (available normalized average measurement values (training set) plotted in grey): a) RC/FB — reinforced
concrete / filler beam (example: 4m < L < 10m), b) PSC - pre-stressed concrete (example: 14m < L < 20 m),
¢) STC — steel/composite (example: 4m < L < 10m).
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It can be seen that the magnification factors depend heavily on the set of input variables
and cannot be specified solely as a function of the span length L. The results from the ANN
approach are largely in the range formed by the minimum and maximum values from the MR
results.

Figures [16] and [I7] show results for parameter studies of randomly selected bridge super-
structures (ex. 1 to 3, respectively) using the ANN approach for different input variables (year
of construction, line speed, presence of sleepers and ballast, construction type) with further
input variables for predicting the damping magnification factor.

S ANN ex. 1 5 ' ' ' ANN ex. 1
r ANN ex. 2 r ANN ex. 2
4+ - ANN ex. 3 4+ - ANN ex. 3
= =
E 31 E E 3r i
Q: RC/FB 9’: RC/FB
B 2r b ? 2r b
S S
[a) [a)
1 1
1 1 1 1 0 1 1 1
1850 1900 1950 2000 100 150 200
year [-] Vinfra [km/h]
S ANN ex. 1 5 ' ' ' ANN ex. 1
I ANN ex. 2 I ANN ex. 2
4+ - ANN ex. 3 4+ - ANN ex. 3
i i
£ 3p ] £ 3r ]
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o o
[a) [a)
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0 1 1 1 1 0 1 1 1
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Figure 16: Sensitivity as a function of the input variables (features) for selected bridge examples (other input
variables fixed): a) year of construction, b) line speed vy, on the bridge superstructure.

From these exemplary results for selected individual examples of bridge superstructures,
the assumption can be confirmed that mainly for concrete (RC/FB and PSC) higher damping
magnification factors are predicted for older bridge superstructures and the values decrease for
younger bridge superstructures. The influence of the line speed on the bridge superstructure
(infrastructure velocity) is significant and leads to a clear increase in the predicted damping
magnification factors at higher velocity. This may be due to the greater accelerations recorded
during the measurements and therefore more significant damping values in the decay phase
(amplitude-dependent damping). For RC/FB and PSC bridge superstructures, higher damping
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magnification factors are predicted in the presence of sleepers or ballast. For STC bridge su-
perstructures, the trend is less clear for the sample bridges examined. A clear decreasing trend
of the damping magnification factors can be observed for the case of the static system of the
bridges, where larger values are predicted for single-span girder systems compared to more
moderate values for continuous girder systems and even low values for portal frames. However,
reference should be made here to the database (Fig. [3l), which contains a significantly higher
number of single-span girder systems compared to continuous girder systems or portal frames
that were previously measured. However, the trend could be explained by the higher accelera-
tion amplitudes and the associated higher damping effects for single-span girder systems.

To summarize, the sources of damping previously mentioned in Sec. can be confirmed
for high damping contributions in the overall structural response.
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Figure 17: Sensitivity as a function of the input variables (features) for selected bridge examples (other input
variables fixed): a) track type (1 = direct rail fastening / slab track, 2 = sleepers, 3 = sleepers and ballast),
b) construction type (1 = singe-span girder, 2 = continuous girder, 3 = portal frame).

S APPLICATION REQUIREMENTS

For application in the field of structural engineering verifications, further safety-relevant
issues still need to be assessed and clarified as part of further research activities (see also Sec.[d).
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A possible procedure is outlined in the following.

First, the input variables of the dataset used for prediction are checked whether each input
variable lies within the training range (input variables within the interval of available exper-
imentally measured and assessed bridge superstructures during training/regression). Second,
physical limits are also specified for the damping magnification factor V. As a suggestion, for
damping magnification factors greater than the value obtained from the regression line in Fig.
as a function of L, the value of the linear regression function (95%-fractile) is set as maximum
value. In analogy, for damping magnification factors V), < 1, i.e. the predicted damping ratio
Dpyreq 1s smaller than the standard damping Dy according to DIN EN 1991-2:2010, Vp = 1
is used or values Vp < 1 obtained from the regression line in Fig. [71if the value of the linear
regression function (5%-fractile) is less than 1. Third, for the use of the predicted damping
values D4, a constant partial safety factor yp is proposed in analogy to DIN EN 1990:2021
Annex D (informative),

D, VD Diorm .
Dpreda = — d - DM o o with {
YD YD

Yp > 1.0 for Dpred/Dnorm > 1,
vp =10 for Dyed/Dyorm <1,

3)

see also the ansatz proposed in [4]. The design value Dy.qq not only allows higher damping
values, but also takes into account lower measured values for special steel structures in reality,
see Figs. [/l and [8] in terms of predicted values Dpread < Drorm- In these cases, the standard
damping ratio given in DIN EN 1991-2:2010 1s higher than the damping ratio determined by
measurement/prediction of the individual bridge superstructure, i.e. the predicted values are on
the safe side (compared to an assessment using standard damping). Reasons for low damping
ratios (measured on real structures) are currently still discussed, but may stem from insufficient
structural excitation by passing trains or noise in the measurement signals due to high-frequency
structural response.

The use of estimated damping values should also depend on the LoD of the model approach.
It has already been shown in the past [23] that simpler models of train-bridge interaction (e.g.
with fixed axle loads represented by time-constant forces) provide more conservative results
compared to multi-body models of train-bridge interaction. In the latter case, predicted damping
values should not be used due to lack of system reserves.

6 EXTENSION TO EUROPEAN SCALE

Within the EU research project InBridgedEU (https://inbridgedeu.eu), the na-
tional results (Germany) are currently compared and harmonized with the European railway
bridge stock. Within the EU research project, the afore-described national bridge stock (Ger-
many) is broadened by including other European bridges of different construction types from
the countries France, Spain, Sweden and Portugal [24]]. While a first goal consists in deriving
harmonized European recommendations for the description of new railway bridges (conserva-
tive assumptions), the consideration of existing measured values of railway bridges in the Euro-
pean railway network enables a damping prediction of comparable existing bridges at the same
time on the European scale (i.e. with the main focus of application on train-bridge compatibility
checks).

However, it has already been shown that construction types differ from country to coun-
try and, therefore, the national features of bridge construction should be included as an input
variable governing the overall damping features of the bridge types.
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7 CONCLUSIONS

In this contribution, two different approaches were presented to predict damping of existing
but not yet measured railway bridges by comparing them with an already measured bridge stock
and similar input parameters. The damping ratio plays a decisive role in correctly assessing the
dynamic train-bridge interaction and calculating the realistic dynamic structural response. It
could be shown that both the application of multidimensional interpolation and an ANN trained
on the basis of the available structural and damping data can be used and provide similar pre-
dicted objective quantities for magnification factors of standard damping ratios given in DIN
EN 1991-2:2010. In addition to a safety margin (partial safety factor) on the predicted objec-
tive quantities, boundary conditions (limits of applicability) were also implemented to prevent
unrealistically large or small objective quantities for damping values. Using a comparison of
both approaches, the variation in the predicted damping magnification factor (sensitivity) due
to changes in the input variables (system parameters) could be shown for selected examples.
The sensitivity analysis also allows a deeper understanding of the dependence of the damping
values on the structural properties.

In addition to the damping properties, the realistically determined eigenfrequency (natural
frequency) plays a decisive role in the realistic calculation of the dynamic structural response
of railway bridges during train passage. As shown in [4]], the procedure presented in this contri-
bution can also be employed to predict the realistic eigenfrequency of existing railway bridges.
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